Bicyclic Heterocycles with Nitrogen at the Ring Junction. Part 2. ${ }^{1}$ Application of the Dakin-West Reaction to the Synthesis of Imidazo-[5,1-f]-1,2,4-triazin-4(3H)-ones

By Isabel Charles, David W. S. Latham, David Hartley,* Alexander W. Oxford, and David I. C. Scopes, Glaxo Group Research Ltd., Ware, Hertfordshire SG12 ODJ

Abstract

A series of novel acylamino α-keto-esters (4) have been prepared via a Dakin-West reaction of acylated α-aminoacids and ethyl oxalyl chloride. Their use in a general synthesis of imidazo [5,1-f]-1,2,4-triazin-4(3H)-ones (7) is described. The conversion of the imidazotriazinones into the corresponding imidazo[5,1-f]-1,2,4-triazines (20) and their 3,4-dihydro-derivatives (19) are also reported.

Recently we described the synthesis and chemistry of 2-amino-5-methyl-7-propylimidazo[5,1-f]-1,2,4-triazin$4(3 H)$-one (1) and the corresponding imidazotriazine derivative (2). ${ }^{1}$ We now report an improved procedure that allows a more flexible approach to the preparation of a wide range of compounds based on the imidazo $[5,1-f]$ -1,2,4-triazine ring system.

(1)

(2)

The principal feature of this new method is the condensation of an acylamino- α-keto-ester (4) with an amidrazone or aminoguanidine derivative (5) to afford
the key intermediate (6). ${ }^{1} \quad$ Although the formation of an acylamino α-keto-acid has been reported, ${ }^{2}$ no general synthetic route to acylamino- α-keto-esters (4) had previously been described. However, we found that these compounds could be obtained from α-amino-acids and ethyl oxalyl chloride via the Dakin-West reaction. ${ }^{3}$ Treatment of the appropriate acylamino-acid (3) with ethyl oxalyl chloride (2 equiv.), pyridine (3 equiv.), and a catalytic quantity of 4 -dimethylaminopyridine (DMAP), ${ }^{\mathbf{4}}$ gave the enol esters (10) which were hydrolysed directly with base to the acylamino- α-keto-ester (4). In general the crude enol esters ($10 \mathrm{a}-\mathrm{d}$) were isolated as oils but the benzamido-derivative (10e) was obtained as a stable crystalline solid.

The azlactones (8) were shown to be intermediates in the reaction by the independent synthesis of (8 b) and subsequent treatment with ethyl oxalyl chloride (l

(3)

(6)

(7)

Scheme Reagents: i, $\mathrm{EtO}_{2} \mathrm{CCOCl}-$-pyridine-DMAP; ii, $\mathrm{H}_{2} \mathrm{O}$; iii, base; iv, polyphosphoric acid; v, $\mathrm{EtO}_{2} \mathrm{CCO}_{2}{ }^{-}$
equiv.), pyridine (2 equiv.), and monoethyl oxalate (1 equiv.) in refluxing tetrahydrofuran to give the enol ester (10b). This process presumably involves the C-acylated oxazolone (9b) but the latter could not be isolated under the conditions of the reaction. Support for this type of C-acylated intermediate is provided by the work of Steglich and Höfle who have reported ${ }^{5}$ the preparation of (9 e) by acylation of 4-methyl-2-phenyloxazolin-5-one (8 e) with ethyl oxalyl chloride in the presence of triethylamine at $0{ }^{\circ} \mathrm{C}$. The enol ester (10b) was also shown to contain the N-acyloxazolone (11) as an impurity. The structure of this by-product was assigned on the basis of its n.m.r. and mass spectra and by hydrogenation to give a mixture of oxazolidinones (12) and (13). The N acyloxazolone (11) was the major product when reaction of the oxazolone (8 b) with ethyl oxalyl chloride (1 equiv.) and pyridine (2 equiv.) was carried out in tetrahydrofuran at reflux in the absence of monoethyl oxalate. This implies that monoethyl oxalate is required in the reaction for the formation of the enol esters (10).

The α-keto-esters ethyl 3 -butyramido-2-oxobutyrate (4b) and ethyl 3 -isovaleramido-2-oxobutyrate (4a) were characterised, after chromatography, as low melting crystalline solids but in most cases these intermediates were used in subsequent reactions without purification.

Condensation of aminoguanidine ($5 ; \mathrm{R}^{3}=\mathrm{NH}_{2}$) with
the α-keto-ester (4b) afforded the triazinone (6; $\mathrm{R}^{1}=\mathrm{Me}$, $\mathrm{R}^{2}=\operatorname{Pr}, \mathrm{R}^{3}=\mathrm{NH}_{2}$) in 50% yield which on cyclisation with polyphosphoric acid gave the imidazotriazinone (1), previously described. ${ }^{1}$ By employing amidrazones in place of aminoguanidine in the above sequence we have

(11)

(14)

(12)

(15)

(13)

(16)
been able to introduce alkyl, benzyl, and phenyl substituents at the 2 -position of the imidazo[$[1-1-f]-1,2,4$-triazine nucleus. In most cases it was found convenient to generate the amidrazone ($5 ; \mathrm{R}^{3}=$ alkyl or benzyl) in situ from the appropriate amidine, ${ }^{6}$ and then carry out the condensation reaction with the α-keto-ester at 70 80° in ethanol. Analytical and spectral data for the

Table 1
Preparation of 1,2,4-triazin-5(4H)-ones (6) from amidrazones and acylamino- α-keto-esters

Compound	R^{1}	R^{2}	R^{3}	M.p. $\left({ }^{\circ} \mathrm{C}\right)$ (Recryst. solvent)	Yield * (\%)	Found (\%)			Molecular formula	Required (\%)		
						C	H	N		C	H	N
(6a)	Me	$\mathrm{Bu}^{\text {i }}$	Me	224-226 (EtOH)	20	52.2	7.8	23.45	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	55.45	7.6	23.5
(6b)	Me	$B u^{i}$	Pri	203-205 (EtOAc)	18	58.45	8.45	21.05	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$	58.6	8.35	21.05
(6c)	Me	$\mathrm{Bu}^{\text {i }}$	Ph	236-238 (EtOH)	21	64.0	6.8	18.7	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$	64.0	6.7	18.65
(6d)	Me	Pr^{n}	Me	235-237 (EtOH)	18	53.15	7.4	24.75	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$	53.55	7.2	25.0
(6e)	Me	$B u^{i}$	H	$\begin{gathered} 167-169 \\ (\mathrm{EtOH}-\mathrm{EtOAc}) \end{gathered}$	13	45.65	6.35	21.3	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \mathrm{HCl} \end{aligned}$	46.05	6.55	21.5
(6f)	Me	Prn	Et	174-177 (EtOH)	15	54.95	7.55	23.55	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	55.45	7.6	23.5
(6g)	Me	$\mathrm{Pr}^{\text {n }}$	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	201-202 (EtOH)	27	64.95	6.8	17.95	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$	64.95	7.05	17.8
(6h)	Me	Prin	PhCH_{2}	176-177 (EtOH)	17	64.1	6.6	18.6	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$	64.0	6.7	18.65
(6i)	Me	$\mathrm{Bu}^{\text {i }}$	PhCH_{2}	$\begin{gathered} 190-193 \\ \text { (EtOH-EtOAc) } \end{gathered}$	17	64.65	7.05	17.8	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$	64.95	7.05	17.8
(6j)	Ph	Prin	Me	210-212 (EtOAc)	17	63.2	6.35	19.5	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	62.9	6.35	19.55
(6k)	Me	$\begin{aligned} & \text { cyclo- } \\ & \mathrm{C}_{5} \mathrm{H}_{9} \end{aligned}$	Me	211-214 (EtOAc)	20	57.45	7.45	22.8	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	57.6	7.25	22.4
(61)	Me	Pl	Me	$\begin{gathered} 201-204 \\ (\mathrm{EtOH}-\mathrm{EtOAc}) \end{gathered}$	26	60.5	5.35	21.55	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	60.45	5.45	21.7

Table 2
Preparation of imidazo[5,1-f]-1,2,4-triazinones (7) from 1,2,4-triazin-5(4H)-ones (6)

Compound	R^{1}	R2	R^{3}	M.p. $\left({ }^{\circ} \mathrm{C}\right)$ (Recryst. solvent)	Yield(\%)	Found (\%)			Molecular formula	Required (\%)		
						C	H	N		C	H	N
(7a)	Me	$\mathrm{Bu}^{\text {i }}$	Me	186-188 (EtOAc)	63	59.75	7.25	25.3	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	60.0	7.3	25.45
(7b)	Me	$\mathrm{Bu}^{\text {i }}$	Pri	135-137 ($\mathrm{Et}_{2} \mathrm{O}$)	57	62.55	8.2	22.35	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$	62.85	8.1	22.55
(7c)	Me	$\mathrm{Bu}^{\text {i }}$	Ph	253-255 (EtOAc)	62	67.6	6.2	19.75	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	68.05	6.45	19.85
(7d)	Me	Pr ${ }^{\text {n }}$	Me	232-235 (EtOAc)	75	58.45	6.75	27.25	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	58.25	6.85	27.15
(7e)	Me	$B u^{i}$	H	$\begin{gathered} 229 .-231 \\ \left(\mathrm{EtOAc}-\mathrm{Et}_{2} \mathrm{O}\right) \end{gathered}$	32	57.95	6.8	27.25	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	58.25	6.85	27.15
(7f)	Me	Pr^{n}	Et	215-217 (EtOAc)	42	59.75	7.45	25.35	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	60.0	7.3	25.45
(7g)	Me	Pr ${ }^{\text {n }}$	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	159-160 (EtOAc)	74	69.0	6.7	18.75	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$	68.9	6.8	18.9
(7h)	Me	$\mathrm{Pr}^{\text {n }}$	PhCH_{2}	156-157 (EtOAc)	85	67.75	6.35	19.8	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	68.05	64.5	19.85
(7i)	Me	$\mathrm{Bu}^{\text {i }}$	PhCH_{2}	164-165 (EtOAc)	67	68.75	6.8	18.85	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$	68.9	6.8	18.9
(7j)	Ph	$\mathrm{Pr}^{\text {n }}$	Me	190-191 (EtOAc)	39	66.95	6.0	20.55	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4}^{4} \mathrm{O}$	67.15	6.0	20.9
(7k)	Me	cyclo-	Me	208-210 (EtOAc)	62	62.4	7.05	24.05	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	62.05	6.95	24.1

Table 3
Preparation of 3,4-dihydroimidazo[5,1-f]-1,2,4-triazines (19) from imidazo[5,1-f]-1,2,4-triazin-4(3H)-ones (7)

Compound (19a)	R^{1}	R^{2}	R^{3}	M.p. $\left({ }^{\circ} \mathrm{C}\right)$ (Recryst. solvent)	Yield (\%) \ddagger	Found (\%)			Molecular formula	Required (\%)		
						C	H	N		C	H	N
	Me	$B u^{i}$	Me	$\begin{gathered} 145-148 * \\ \left(\operatorname{Pr}^{\mathrm{i} O H}-\mathrm{Et}_{2} \mathrm{O}\right) \end{gathered}$	83	55.75	7.05	17.3	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$	55.9	6.9	17.4
(19b)	Me	Bu^{i}	Pr^{1}	$\begin{gathered} 189-194 \dagger \\ \left(\text { Pri }^{\mathrm{OH}-\mathrm{EtOAC}}\right) \end{gathered}$	48	58.0	8.6	21.1	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{4}, \mathrm{HCl}$	57.65	8.55	20.7
(19c)	Me	$\mathrm{Bu}^{\text {i }}$	Ph	$\begin{gathered} 235-239 \dagger \\ (\mathrm{EtOH}-\mathrm{EtOAc}) \end{gathered}$	65	63.0	7.0	18.4	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4}, \mathrm{HCl}$	63.05	6.95	18.4
(19d)	Me	Pr^{n}	-Me	$\begin{gathered} 143-149 \\ \text { (decomp.) (EtOAc) } \end{gathered}$	74	62.75	8.85	29.25	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4}$	62.45	8.4	29.15
(19e)	Me	$\mathrm{Bu}^{\text {i }}$	H	147-149 ($\mathrm{Et}_{2} \mathrm{O}$)	18	62.15	8.35	29.0	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4}$	62.45	8.4	29.15
(19f)	Me	$\mathrm{Pr}^{\mathrm{Pr}}$	$\mathrm{Et}^{\text {PhCH }}$	115-117 (EtOAc)	31	64.2	8.95	27.2	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4}$	64.05	8.8	27.15
(19g)	Me	Pr^{n}	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	115-117 ($\mathrm{Et}_{2} \mathrm{O}$)	95	71.95	7.85	19.65	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4}$	72.3	7.85	19.85

Table 4
Preparation of imidazo[5,1-f]-1,2,4-triazines (20) from 3,4-dihydroimidazo[5,1-f]-1,2,4-triazines (19)

Compound (20a)	$\begin{gathered} \mathrm{R}^{1} \\ \mathrm{Me} \end{gathered}$	$\begin{gathered} \mathrm{R}^{2} \\ \mathrm{Bu}^{\mathrm{i}} \end{gathered}$	$\begin{gathered} \mathrm{R}^{3} \\ \mathrm{Me} \end{gathered}$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$ (Recryst. solvent)	$\begin{aligned} & \text { Yield } \\ & (\%) \$ \end{aligned}$$67$	Found (\%)			Molecular formula	Required (\%)		
						C	H	N		C	H	N
				$\begin{gathered} 100-103^{*} \\ \left(\mathrm{EtOAc}-\mathrm{Et}_{2} \mathrm{O}\right) \end{gathered}$		53.6	6.55	16.5	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}, \mathrm{H}_{2} \mathrm{O}$	53.25	6.55	16.55
(20b)	Me	$B u^{i}$	$\mathrm{Pr}^{\text {i }}$	$\begin{gathered} 144-146 \\ \text { (decomp.) } \dagger \\ \text { (EtOAc-EtOH) } \end{gathered}$	46	54.5	8.55	19.25	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4}, \mathrm{HCl}$	54.4	8.15	19.25
(20c)	Me	$\mathrm{Bu}^{\text {i }}$	Ph	117-120 \ddagger	46	71.8	6.8	20.7	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4}$	72.15	6.8	21.05
(20d)	Me	Pr ${ }^{1}$	Me	54-56 \ddagger	57	62.95	7.55	29.4	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4}$	63.15	7.4	29.45

* Characterised as maleate salt. \dagger Characterised as hydrochloride salt. \ddagger Purified by sublimation \S Yield of base.

Table 5
Spectral data for 1,2,4-triazin-5(4H)-ones (6)

Compd. (6a)	${ }^{1} \mathrm{H}$ N.m.r. spectra $(\tau)\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO)			CHR ${ }^{1}$	$\underset{\mathrm{cm}^{-1}}{\nu_{\max }(\text { Nujol }) \mid}$	$\begin{gathered} \lambda_{\text {max. }} \\ \left(\begin{array}{c} \text { EtOHH} \end{array}\right) / \\ \mathrm{nm} \end{gathered}$	ε	$\underset{\underset{\mathrm{NaO}}{\lambda_{\text {max }}}}{(\mathrm{EtOH}) /}+$
	R^{1}	R^{2}	R^{3}					
	8.70 (3 H, d)	$7.8-8.3$ ($3 \mathrm{H}, \mathrm{m}$)	7.68 ($3 \mathrm{H}, \mathrm{s}$)	4.90 ($1 \mathrm{H}, \mathrm{m}$)	1663	235	9350	
		9.1 ($6 \mathrm{H}, \mathrm{d}$)			1640	261sh	5400	
(6b)	8.52 (3 H, d)	$7.5-8.0(3 \mathrm{H}, \mathrm{m})$	6.85 ($1 \mathrm{H}, \mathrm{m}$)	4.52 ($1 \mathrm{H}, \mathrm{m}$)	$1635 \dagger$	235	9350	
		9.1 ($6 \mathrm{H}, \mathrm{d}$)	8.68 ($6 \mathrm{H}, \mathrm{d}$)			260 sh	5400	
(6c)	8.60 (3 H, d)	$7.7-8.2(3 \mathrm{H}, \mathrm{m})$	1.7-2.0 ($2 \mathrm{H}, \mathrm{m}$)	4.8 ($1 \mathrm{H}, \mathrm{m}$)	1630			
(6d)	$8.1-8.9(5 \mathrm{H}, \mathrm{m})$		$2.2-2.5(3 \mathrm{H}, \mathrm{m})$ $7.65(3 \mathrm{H}, \mathrm{s})$	4.92 ($1 \mathrm{H}, \mathrm{m}$)	1665	235	9200	233
		7.85 (2 H, t)	7.65 (3 H, s)		1642	265sh	5200	${ }_{283}^{233}$
	$8.54(3 \mathrm{H}, \mathrm{d})$	${ }_{7.7}^{9.1}(3 \mathrm{H}, \mathrm{H}, \mathrm{t}) \mathrm{H}(3 \mathrm{H}, \mathrm{m})$	1.02 (1 H, s)	$4.84(1 \mathrm{H}, \mathrm{q})$	1650			
(6e) *		$\begin{aligned} & 7.7-8.3(3) \\ & 9.1(6 \mathrm{H}, \mathrm{~d}) \end{aligned}$				${ }_{263} \mathbf{2 3} 9$	9350 5200	
(6f)	8.65 (3 H, d)	7.80 (2 H, t)	7.35 (2 H, q)	4.90 ($1 \mathrm{H}, \mathrm{m}$)	1660	236	9180	
		$\begin{aligned} & \sim 8.4(2 \mathrm{H}, \mathrm{~m}) \\ & \mathbf{9 . 1}(3 \mathrm{H}, \mathrm{t}) \end{aligned}$	8.75 (3 H, t)		1640	260sh	5490	
(6y)	$8.64(3 \mathrm{H}, \mathrm{d})$	$7.84(2 \mathrm{H}, \mathrm{t})$	2.70 ($5 \mathrm{H}, \mathrm{s}$)	4.91 ($1 \mathrm{H}, \mathrm{m}$)	$1640 \dagger$	235	9590	
		$\sim 8.4(2 \mathrm{H}, \mathrm{m})$	~ 7.0 ($4 \mathrm{H}, \mathrm{m}$)			266	5840	
		$9.08(3 \mathrm{H}, \mathrm{t})$						
(6h)	8.65 ($3 \mathrm{H}, \mathrm{d}$)	$7.84(2 \mathrm{H}, \mathrm{t})$	2.60 ($5 \mathrm{H}, \mathrm{s}$)	4.91 (1 H, m)	1660	235	9500	
		8.45 ($2 \mathrm{H}, \mathrm{m}$)	6.07 ($2 \mathrm{H}, \mathrm{s}$)		1620	260 sh	6000	
		$9.10(3 \mathrm{H}, \mathrm{t})$						
(6i)	8.65 (3 H, d)	7.5-8.5 ($3 \mathrm{H}, \mathrm{m}$)	$2.60(5 \mathrm{H}, \mathrm{s})$	4.91 (1 H, m)	1650	237	9550	234
		$9.1(6 \mathrm{H}, \mathrm{d})$	$6.10(2 \mathrm{H}, \mathrm{s})$		1620	265sh	6050	284
(6j)	2.60 ($5 \mathrm{H}, \mathrm{s}$)	7.75 (2 H, t)	7.68 (3 H, s)	3.68 (1 H, d)	1630	234	9600	${ }_{23} 38$
		$\sim 8.4(2 \mathrm{H}, \mathrm{m})$ $\mathbf{9 . 1 3}(3 \mathrm{H}, \mathrm{t})$				264sh	5200	286
(6k)	8.65 (3 H, d)	7.3 ($1 \mathrm{H}, \mathrm{m}$)	7.65 (3 H, s)	4.95 ($1 \mathrm{H}, \mathrm{m}$)	1650	235	8350	232
		$8.0-8.6(8 \mathrm{H}, \mathrm{m})$				265sh	5000	283
(61)	$8.54(3 \mathrm{H}, \mathrm{d})$	$2.0-2.2(2 \mathrm{H}, \mathrm{m})$	7.70 (3 H, s)	4.75 (1 H, m)	1640	231	18600	
		2.3-2.6 ($3 \mathrm{H}, \mathrm{m}$)				266sh	6450	
		* N.m.r. spectrum of	HCl salt recorded in	$\mathrm{D}_{2} \mathrm{O} . \quad \dagger \mathrm{In} \mathrm{CH}$	Br_{3} solution.			

Table 6
Spectral data for imidazo[5,1-f]-1,2,4-triazin-4(3H)-ones (7)

	${ }^{1} \mathrm{H}$ N.m.r. spectra (τ) $\left(\mathrm{CDCl}_{3}\right)$			$\underset{\left(\mathrm{CHBl}_{\mathrm{nax}}\right.}{\left(\mathrm{CHBr}_{3}\right) /}$	$\begin{gathered} \lambda_{\max } \\ (\mathrm{EtOH}) / \\ \mathrm{nm} \end{gathered}$	ε	$\begin{gathered} \lambda_{\text {max }} . \\ (\mathrm{EtOH} \\ \mathrm{NaOH}) / \\ \mathrm{nm} \end{gathered}$
Compd.	R^{1}	R^{2}	R^{3}				
(7a)	7.40 (3 H, s)	7.15 (2 H, d)	7.63 (3 H, s)	1680	222	24200	235
		$7.8(1 \mathrm{H}, \mathrm{m})$		1645	252	9000	261
		9.00 ($6 \mathrm{H}, \mathrm{d}$)			265sh	6200	269 sh
					281sh		300
(7b)	7.35 (3 H, s)	7.12 (2 H, d)	6.85-7.35 (1 H, m)	1685	222	23450	
		$7.45-7.95$ ($1 \mathrm{H}, \mathrm{m}$)	$8.60(6 \mathrm{H}, \mathrm{d})$	1635	251	8850	261
		$9.00(6 \mathrm{H}, \mathrm{t})$			266sh		270sh
					285 sh		297
$(7 \mathrm{c})^{*}$	7.41 (3 H, s)	7.10 (2 H. d)	$1.7-1.9(2 \mathrm{H}, \mathrm{~m})$	1685	243	23850	
	.41 (3 H,	$\sim 7.7(1 \mathrm{H}, \mathrm{m})$	$2.15-2.4(3 \mathrm{H}, \mathrm{~m})$		264sh	19750	
		8.95 ($6 \mathrm{H}, \mathrm{d}$)					
(7d)	7.40 (3 H, s)	7.1 ($2 \mathrm{H}, \mathrm{t}$)	7.55 (3 H, s)	1680	222	24200	233
		$8.2(2 \mathrm{H}, \mathrm{m})$		1648	248	8700	260
		$9.0(3 \mathrm{H}, \mathrm{t})$			263 sh	6150	269sh
					280sh	2400	297
(7e)	7.40 (3 H, s)	7.10 (2 H, d)	2.53 br (1 H. s)	1690	224	23700	
		7.75 (1 H, m)			247	8700	$258 \mathrm{sh}$
		$9.05(6 \mathrm{H}, \mathrm{d})$			262sh	5500	$268 \mathrm{sh}$
					285 sh		
(7f)	7.38 (3 H, s)	7.05 (2 H, t)	7.30 (2 H, q)	1680	221	24200	
	. 38 (3 H,	8.20 (2 H, mı	$8.60(3 \mathrm{H}, \mathrm{t})$		250	8800	
		$8.99(3 \mathrm{H}, \mathrm{t})$			278sh	2700	
(7g)	7.39 (3 H, s)	$\sim 6.7-7.2(2 \mathrm{H}, \mathrm{m})$	$\sim 2.75(5 \mathrm{H}, \mathrm{m})$	1680	218	25600	
		8.20 (2 H, m)	6.7-7.2 (4 H, m)	1640	254	9800	
		9.05 (3 H, t)			265 sh		
(71)	7.35 (3 H, s)	$7.0(2 \mathrm{H}, \mathrm{t})$	$2.5-2.8(5 \mathrm{H}, \mathrm{m})$	1690	221	25000	
	7.35 (3 H, ${ }^{\text {) }}$	8.15 (2 H, m)	6.1 (2 H, s)		254	10100	
		$9.00(3 \mathrm{H}, \mathrm{t})$			$265 s h$	7300	
(7i)	7.32 (3 H, s)	7.06 (2 H, d)		1690	222	25550	
		$7.7(1 \mathrm{H}, \mathrm{m})$	$6.1(2 \mathrm{H}, \mathrm{s})$		253	10450	262
		$9.0(6 \mathrm{H}, \mathrm{d})$			265 sh	7700	$\begin{aligned} & 270 \mathrm{sh} \\ & 300 \end{aligned}$
(7j) *		7.07 (2 HI, t)	7.75 (3 H, s)	1680	275	10200	
	$2.3-2.6(3 \mathrm{H}, \mathrm{m})$	8.20 (2 H, m)		1649	295	9900	
		$9.00(3 \mathrm{H}, \mathrm{t})$			311	10100	
(7k)	7.38 (3 H, s)	$\sim 6.5(1 \mathrm{H}, \mathrm{m})$	7.60 (3 H, s)	1685	224	23800	235
		7.7-8.4 (8 H. m)			255	9050	259
					265	6250	269sh
							300

* N.m.r. spectrum recorded in $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO.

Table 7
Spectral data for 3,4-dihydroimidazo[5,1-f]-1,2,4-triazines (19)

Compound
(19a)
(19b)
(19c)
(19d)
(19e)
(19f)
(19g) *
${ }^{1} \mathrm{H}$ N.m.r. spectra (τ) $\left(\mathrm{CDCl}_{3}\right)$
$\frac{{ }^{1} \mathrm{H} N}{\mathrm{R}^{2}}$

R^{1}	R^{2}	R^{3}	4-H
7.90 ($3 \mathrm{H}, \mathrm{s}$)	7.34 (2 H, d)	7.99 (3 H, s)	$5.50 \mathrm{br}(2 \mathrm{H}, \mathrm{s})$
	$\begin{aligned} & 7.6 \cdot 8.1(1 \mathrm{H}, \mathrm{~m}) \\ & 90(6 \mathrm{H} \end{aligned}$		
7.90 ($3 \mathrm{H}, \mathrm{s}$)	$7.3(2 \mathrm{H}, \mathrm{d})$	7.3-7.9 (1 H, m)	$5.50 \mathrm{br}(2 \mathrm{H}, \mathrm{s})$
	$7.3-7.9(1 \mathrm{H}, \mathrm{m})$	8.75 ($6 \mathrm{H}, \mathrm{d}$)	
	9.00 ($6 \mathrm{H}, \mathrm{d}$)		
7.88 ($3 \mathrm{H}, \mathrm{s}$)	7.25 (2 H, d)	$2.0-2.3(2 \mathrm{H}, \mathrm{m})$	$5.35 \mathrm{br}(2 \mathrm{H}, \mathrm{s})$
	$7.5-8.1(1 \mathrm{H}, \mathrm{m})$	$2.3-2.7(3 \mathrm{H}, \mathrm{m})$	
	$9.01(6 \mathrm{H}, \mathrm{d})$		
$7.89(3 \mathrm{H}, \mathrm{s})$	$7.2(2 \mathrm{H}, \mathrm{t})$	7.98 ($3 \mathrm{H}, \mathrm{s}$)	$5.50 \mathrm{br}(2 \mathrm{H}, \mathrm{s})$
	8.3 (2 H, m)		
	9.0 ($3 \mathrm{H}, \mathrm{t}$)		
7.90 ($3 \mathrm{H}, \mathrm{s}$)	$7.34(2 \mathrm{H}, \mathrm{d})$	3.06 (1 H, d)	5.47br (2 H, s)
	$7.5-8.2(1 \mathrm{H}, \mathrm{m})$		
	9.02 ($6 \mathrm{H}, \mathrm{d}$)		
$7.92(3 \mathrm{H}, \mathrm{s})$	7.25 (2 H, t)	7.70 (2 H. q)	5.55br (2 H, s)
	$8.3(2 \mathrm{H}, \mathrm{m})$	$8.80(3 \mathrm{H}, \mathrm{t})$	
	$9.02(3 \mathrm{H}, \mathrm{t})$		
8.02 ($3 \mathrm{H} . \mathrm{s}$)	7.3-7.7 ($2 \mathrm{H}, \mathrm{m}$)	2.7 ($5 \mathrm{H}, \mathrm{s}$)	$5.62 \mathrm{br}(2 \mathrm{H}, \mathrm{s})$
	8.37 ($2 \mathrm{H}, \mathrm{m}$)	7.06 ($2 \mathrm{H}, \mathrm{m}$)	
	$9.11(3 \mathrm{H}, \mathrm{t})$	7.3-7.7 ($2 \mathrm{H}, \mathrm{m}$)	

* N.m.r. spectrum in $\left[{ }^{[} \mathrm{H}_{6}\right]$ DMSO

$\lambda_{\text {max }} / \mathrm{nm}$	ε
253	9300
254	9550
224	15350
298	9100
254	9200
253	9000
253	9300
257	9950

Table 8
Spectral data for imidazo[5,1-f]-1,2,4-triazines (20)

Compound (20a) *	${ }^{1} \mathrm{H}$ N.m.r. spectra (τ) $\left(\mathrm{CDCl}_{3}\right)$					$\lambda_{\text {max }} / \mathrm{nm}$	ε
	R^{1}	R^{2}	R^{3}	4-H			
	7.61 (3 H, s)	7.10 (2 H, d)	$7.80(3 \mathrm{H}, \mathrm{s})$		3.76 (1 H, s)	229	17600
		$7.5-8.0$ ($1 \mathrm{H}, \mathrm{m}$)				250	9000
		$9.00(6 \mathrm{H}, \mathrm{d})$				368	
(20b)	7.41 (3 H, s)	7.00 (2 H, d)	6.9 (1 H, m)	1.07 (1 H, s)	$3.62(1 \mathrm{H}, \mathrm{s}) \dagger$	230	9800 §
		7.7 (1 H, m)	8.65 (6 H, d)			252	8850
		9.0 (6 H, d)				357	260
(20c)	7.38 (3 H, s)	6.90 (2 H, d)	$\sim 1.6(2 \mathrm{H}, \mathrm{m})$	0.95 (1 H, s)	$3.45(1 \mathrm{H}, \mathrm{s}) \ddagger$	228	14050
		7.6 (1 H, m)	~ 2.45 ($3 \mathrm{H}, \mathrm{m}$)			267	34050
		9.0 ($6 \mathrm{H}, \mathrm{d}$)				275 sh	29550
						280	1350
(20d)	7.52 (3 H, s)	6.95 (2 H, t)	7.52 (3 H, s)	1.08 (1 H, s)	$3.55(1 \mathrm{H}, \mathrm{s}) \ddagger$	228	30950
		8.1 (2 H, m)				261	2600
		$8.95(3 \mathrm{H}, \mathrm{t})$				370	2350

* N.m.r. data is for maleate salt in $\mathrm{D}_{2} \mathrm{O}$; u.v. data for maleate salt in EtOH. $\dagger 4$ - H Chemical shift of HCl salt in $\mathrm{D}_{2} \mathrm{O} . \quad \ddagger 4$ - H Chemical shift of free base in $\mathrm{DCl}-\mathrm{D}_{2} \mathrm{O} . \S \mathrm{U} . \mathrm{v}$. data for HCl salt in EtOH .

1,2,4-triazin- $5(4 H)$-ones are compiled in Tables 1 and 5. The magenta tetrazines (14) were a by-product of virtually all the condensation reactions and this may account for the modest yields observed in these reactions. On a few occasions formation of small amounts of N^{4} aminotriazinones (15) were also observed, presumably resulting from the condensation of 3 -substituted dihydroformazans (16) (generated from further reaction of amidrazones with hydrazine) with the α-keto-esters (4).

The structure (6) of the triazinones has been confirmed by X-ray crystallographic analysis of the subsequently prepared imidazotriazine derivatives (7c) and (19d). However in one instance we did observe the alternative mode of addition when the triazinones (6 h) (see Table 1) and (17) were isolated from the reaction of phenyl-

(17)

(19)

(21)

(18)

(20)

$$
a ; R^{1}=R^{3}=M e, R^{2}=B u^{i}
$$

$$
\mathrm{d} ; \mathrm{R}^{1}=R^{3}=M \mathrm{e}, R^{2}=\operatorname{Pr}{ }^{n}
$$

$b: R^{1}=R^{3}=M e, R^{2}=P r^{n}$
acetamidrazone with the α-keto-ester (4b). A recent communication discloses the formation of both possible triazinones from the condensation of benzamidrazone with diethyl 2-methyl-3-oxosuccinate.?

Cyclisation of (6 h) (polyphosphoric acid) afforded the
imidazotriazinone (7 h) in 85% yield whereas under similar conditions the isomeric imidazo $[1,5-d]-1,2,4-$ triazin- $1(2 H)$-one (18) was formed in only 20% yield from the triazinone (17). In the latter case the low yield is presumably due to an unfavourable steric interaction during ring closure.

Although imidazo[5,1-f]-1,2,4-triazin-4(2H)-ones (7a -k) were prepared in good yield from the corresponding 1,2,4-triazin- $5(4 H)$-ones using polyphosphoric acid as the cyclising agent (Tables 2 and 6), treatment with phosphoryl chloride in refluxing 1,2 -dichloroethane was found to be equally effective. Reduction of the carbonyl function of the imidazotriazinones (7) to provide 3,4dihydroimidazo $[5,1-f]-1,2,4$-triazines (19) was best achieved with lithium aluminium hydride in 1,2 -dimethoxyethane at reflux (Tables 3 and 7).

Dehydrogenation of the dihydroimidazotriazines (19a-d) over palladium on charcoal afforded imidazo-[5,1-f]-1,2,4-triazines (20a-d) (Table 4). The n.m.r spectra of the protonated imidazotriazines in $\mathrm{D}_{2} \mathrm{O}$ revealed a striking upfield shift of the $4-\mathrm{H}$ signal from its position in the free base (Table 8). This can be rationalised in terms of covalent hydration of the 3,4 -azomethine bond to give the species (21). ${ }^{8}$ As in the case of the imidazotriazine (2) ${ }^{1}$ the 3,4 -azomethine bond reacted readily with Grignard reagents. Thus, reaction of (20a and d) with methylmagnesium iodide afforded the 3,4-dihydro-4-methylimidazotriazines (22a and b) in good yield (67 and 64%, respectively).

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ n.m.r. spectra were measured (SiMe_{4} internal standard) on a Varian EM 390 or a Perkin-Elmer R12A spectrometer, and the i.r. spectra and u.v. spectra (ethanol solutions) were recorded on Perkin-Elmer 357 and 402 spectrophotometers respectively (by Dr. J. H. Hunt and his staff). The mass spectra were recorded on an A.E.I. MS30 spectrometer (by Dr. R. Tanner). The elemental analyses were determined (by Dr. L.R. Rowe and his staff) on a Hewlett-Packard 185B C, H, and N analyser. All m.p.s are uncorrected. Chromatography was carried out on Merck silica gel 60.

Ethyl 3-Butyramido-2-oxobutyrate (4b).-To a stirred solution of butyrylalanine $(238.5 \mathrm{~g}, 1.5 \mathrm{~mol}), 4$-dimethyl-
aminopyridine ($6 \mathrm{~g}, 0.05 \mathrm{~mol}$), and pyridine ($355.5 \mathrm{~g}, 4.5 \mathrm{~mol}$) in tetrahydrofuran (1) was added ethyl oxalyl chloride $(409.5 \mathrm{~g}, 3 \mathrm{~mol})$ at a rate sufficient to initiate refluxing. The mixture was then heated to maintain a gentle reflux for 1.5 h . The cooled mixture was treated with water (11) and extracted with ethyl acetate $(3 \times 500 \mathrm{ml})$. The organic extract was washed with water ($2 \times 250 \mathrm{ml}$) and dried over sodium sulphate. Removal of the solvent afforded the enol ester (10 b) as an orange syrup (293 g).

A solution of the enol ester (293 g) in absolute ethanol $(270 \mathrm{ml})$ was treated with sodium hydrogencarbonate $(66 \mathrm{~g})$ and the mixture heated at reflux for 2.5 h . After the mixture had cooled to room temperature sodiun hydrogencarbonate was filtered off and the filtrate was concentrated to an oil. This oil in ethyl acetate solution was filtered and then evaporated in vacuo to provide crude ethyl 3-butyr-amido-2-oxobutyrate (200 g).

Purification of the product could be effected by chromatography on a column of silica gel (cyclohexane-ethyl acetate, $3: 1 \longrightarrow 1: 1$), to give a pale yellow viscous oil that crystallised on trituration with pentane-ether at $c a$. 10°. Recrystallisation from pentane-ether gave ethyl 3 -butyramido-2-oxobutyrate (4b), m.p. 46.5-49.5 ${ }^{\circ} \nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3430$, 1735 (shoulder), 1730 , and $1665 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 3.5 \mathrm{br}$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.65\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $7.79\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.57$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right), 8.64\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $9.07(3 \mathrm{H}$, $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) (Found: C, 56.1; H, 8.1; N, 6.55. $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{-}$ NO_{4} requires C, $55.8 ; \mathrm{H}, 7.95 ; \mathrm{N}, 6.5 \%$).

Ethyl 3-Isovaleramido-2-oxobutyrate (4a).-This was prepared from isovalerylalanine using a similar procedure, m.p. $52-53.5^{\circ}$ (from pentane-ether); $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3425,1740$ (shoulder) 1730 , and $1665 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 3.7 \mathrm{br}(1 \mathrm{H}, \mathrm{d}$, $\mathrm{NH}), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.66\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.7-$ $8.2\left[3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 8.59\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right), 8.61$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $9.06\left[6 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ (Found: C, $57.35 ; \mathrm{H}, 8.65 ; \mathrm{N}, 6.0 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 57.6 ; H, 8.35 ; N. 6.1%).
Ethyl 3-(N-Cyclopentylcarboxamide)-2-oxobutyrate (4c).This was prepared from N-cyclopentylcarbonylalanine as above and was obtained as a golden yellow oil and was used directly, without characterisation, in the preparation of triazinone (6 k).
Ethyl 3-Butyramido-2-oxo-3-phenylpropionate (4d).-This was prepared from butyryl- α-phenylglycine, as described above, as a golden yellow oil and was used directly, without full characterisation, in the preparation of triazinone (6 j); $\tau\left(\mathrm{CDCl}_{3}\right) 2.63(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 3.3 \mathrm{br}(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 3.73(1 \mathrm{H}$, d, $\mathrm{C} H \mathrm{NH}), 5.80\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.80\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 8.1-8.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.80\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right)$, and $9.10\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
Ethyl 3-Benzamido-2-oxobutyrate (4e).-To a stirred solution of benzoylalanine ($190 \mathrm{~g}, 1.0 \mathrm{~mol}$), 4 -dimethylaminopyridine ($4 \mathrm{~g}, 0.034 \mathrm{~mol}$), and pyridine ($237 \mathrm{~g}, 3.0 \mathrm{~mol}$) in tetrahydrofuran (lll) was added ethyl oxalyl chloride $(273 \mathrm{~g}, 2.0 \mathrm{~mol})$ at a rate sufficient to initiate refluxing. The mixture was then heated to maintain a gentle reflux for 3.5 h . The cooled mixture was treated with water (1l) and stirred vigorously at room temperature for 0.5 h . The tetrahydrofuran layer was separated and the aqueous phase was extracted with ethyl acetate $(2 \times 150 \mathrm{ml})$. The organic extracts were combined, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated in vacuo to leave a pale yellow solid. Recrystallisation of this material from ethyl acetate afforded the enol ester (10 e), as needles ($202.5 \mathrm{~g}, 59 \%$), m.p. $106-108^{\circ}$,
$\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3300,1780,1745,1690,1670$, and 1630 cm^{-1}; $\lambda_{\text {max. }}(\mathrm{EtOH}) 233(\varepsilon 10600)$ and $308 \mathrm{~nm}(11100)$; $\tau\left(\mathrm{CDCl}_{3}\right) 1.9-2.1(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.3-2.6(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.52\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.68\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.4$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 8.53\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $8.68(3 \mathrm{H}$, $\mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) (Found: C, 58.4; H,5.5; N, 3.95. $\mathrm{C}_{17} \mathrm{H}_{19}{ }^{-}$ NO_{7} requires C, $58.45 ; \mathrm{H}, 5.5$; N, 4.0%).

To a stirred suspension of the enol ester (10e) (202.5 g, $0.58 \mathrm{~mol})$ in absolute ethanol $(600 \mathrm{ml})$, at room temperature, was added dropwise a solution of sodium ethoxide in ethanol until a clear yellow solution resulted. The ethanol was then removed in vacuo and the residue treated with ether. The ether solution was washed with water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated in vacuo to give a yellow oil. Chromatography on a column of silica gel gave ethyl 3-benzamido-2-oxobutyrate as a pale yellow oil. This material was directly used in the preparation of triazinone (61); $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3420,1735$, and $1658 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right)$ $2.2(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.5(\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 2.8 \mathrm{br}(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}), 5.65\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and 8.4-8.7 ($\left.5 \mathrm{H}, \mathrm{d}+\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$.

Preparation of 1,2,4-Triazin-5(4H)-ones (6).-General procedure. To an ice-cold solution of amidine hydrochloride (0.7 mol) in absolute ethanol (600 ml) was added a solution of hydrazine hydrate (0.7 mol) in absolute ethanol $(20 \mathrm{ml})$ over 10 min . The cooling bath was removed and the mixture stirred at room temperature for $5-10 \mathrm{~min}$. A solution of the acylamino α-keto-ester (4) $(0.7 \mathrm{~mol})$ in absolute ethanol (100 ml) was then added * and the mixture heated at 70° for 4 h . The mixture was cooled to room temperature and the precipitated ammonium chloride filtered off. The filtrate was concentrated, ethyl acetate added, and the precipitated 1,2,4-triazinone collected by filtration. Concentration of the filtrate provided further crops of product.

N-[1-(3-Benzyl-1,6-dihydro-6-oxo-1,2,4-triazin-5-yl)ethyl]butyramide (17).-This was obtained as an off-white crystalline solid, m.p. $166-168.5^{\circ}$, $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3360,1680$, and $1590 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 225(\varepsilon 12200), 259(1900), 266(1950), 271$ (3900), and $306 \mathrm{~nm}(3900)$; $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.8 \mathrm{br}(1 \mathrm{H}, \mathrm{d}$, NH), $2.70(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.87(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}), 6.03(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 7.90\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $8.68\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right)$, and $9.14\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 63.9 ; \mathrm{H}, 6.75 ; \mathrm{N}, 18.6 . \quad \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}$, 6.7 ; N, 18.65%).

Preparation of Imidazo[5,1-f]-1,2,4-triazin-4(3H)-ones (7). -Geneval procedure. Method A. Polyphosphoric acid $(130 \mathrm{~g})$ was pre-heated to 150° and the $1,2,4$-triazin- $5(4 H)$ one (0.067 mol) was added portionwise during $10-15 \mathrm{~min}$ with stirring. Following complete dissolution of the added triazinone the mixture was heated at 150° for 45 min . The mixture was allowed to cool to $c a .100^{\circ}$ and poured into icewater ($c a .500 \mathrm{ml}$) and the solution was then basified by addition of 2 N -sodium carbonate solution. The precipitated imidazotriazinone was collected by filtration. Extraction of the filtrate with ethyl acetate provided a further quantity of product.

Method B. The 1,2,4-triazin-5(4H)-one (0.007 mol) and phosphorus oxychloride (5 ml) in 1,2-dichloroethane (40 ml)

* In the case of triazinone (6e) this addition was made at -60° over 1.5 h . The mixture was allowed to warm to 0° overnight and then heated at reflux for 1.5 h . Chromatography on a column of silica gel (ethyl acetate-ethanol, $6: 1$) was required to purify the product, which was then characterised as its hydrochloride salt (see Table 1).
were heated at reflux for 2 h . The solvent and excess of phosphorus oxychloride were evaporated in vacuo and the residue treated with 2 N -sodium carbonate solution (50 ml) and ethyl acetate (50 ml). The mixture was shaken vigorously until all the solid had dissolved. The ethyl acetate layer was separated and the aqueous phase extracted with a further quantity of ethyl acetate ($2 \times 50 \mathrm{ml}$). The ethyl acetate extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to provide the imidazotriazinone.

4-Benzyl-7-methyl-5-propylimidazo[1,5-d]-1,2,4-triazin$1(2 \mathrm{H})$-one (18).-This had $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3395$ and 1673 $\mathrm{cm}^{-1} ; \tau\left[\mathrm{CDCl}_{3}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.3 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.5-3.0$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.65(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} 2), 7.17\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 7.33\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 8.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $9.08\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (Found: C, $68.0 ; \mathrm{H}, 6.55 ; \mathrm{N}$, 19.65. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires $\left.\mathrm{C}, 68.05 ; \mathrm{H}, 6.45 ; \mathrm{N}, 19.85 \%\right)$.

Preparation of 3,4-Dihydroimidazo[5,1-f]-1,2,4-triazines (19).-General procedure. Lithium aluminium hydride $(0.145 \mathrm{~mol})$ was added portionwise during 10 min to a stirred solution of the imidazo[5,1-f]-1,2,4-triazin-4 $(3 H)$-one (7) $(0.08 \mathrm{~mol})$ in 1,2 -dimethoxyethane. The mixture was heated at reflux for 2 h and then cooled and quenched by the sequential addition of water (10 ml), 2 N -sodium hydroxide solution (15 ml), and finally water (10 ml) again. The granular precipitate of aluminium salts was filtered off and the filtrate evaporated to leave a partially crystalline residue. Recrystallisation provided pure dihydroimidazotriazine (19).

3,4-Dihydro-7-propyl-2,4,5-trimethylimidazo[5,1-f]-1,2,4triazine (22b).-An ethereal solution (90 ml) of methylmagnesium iodide [prepared from methyl iodide (2.84 g , 0.02 mol) and magnesium turnings ($0.48 \mathrm{~g}, 0.02 \mathrm{~mol}$)] was added to a stirred solution of 2,5-dimethyl-7-propylimidazo[$5,1-f]-1,2,4$-triazine (20 d) ($1.90 \mathrm{~g}, 0.01 \mathrm{~mol}$) in anhydrous ether (30 ml). The mixture was stirred at room temperature for 15 h and then aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added until all the solid had dissolved. The ether layer was separated and the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{ml})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to dryness in vacuo. The residue was recrystallised from ethyl acetate to afford the title compound ($1.31 \mathrm{~g}, 64 \%$), m.p. $175-179^{\circ}$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3430$ and $1640 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 256 \mathrm{~nm}(\varepsilon 10800)$; $\tau\left(\mathrm{CDCl}_{3}\right) 3.58 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.24(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}), 7.27$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.89\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 8.02(3 \mathrm{H}, \mathrm{s}$, $\left.2-\mathrm{CH}_{3}\right), 8.0-8.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.56(3 \mathrm{H}, \mathrm{d}$, $\mathrm{CH}_{3} \mathrm{CH}$), and $9.02\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 63.95$; $\mathrm{H}, 8.4 ; \mathrm{N}, 27.6 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4}$ requires $\mathrm{C}, 64.05 ; \mathrm{H}, 8.8 ; \mathrm{N}$, 27.15\%).

3,4-Dihydro-7-isobutyl-2,4,5-trimethylimidazo[5,1-f]-1,2,4triazine (22a).-This was prepared from the imidazotriazine (20a) (in 67% yield) by a similar procedure to that described for the preparation of (22b), m.p. 174-178 ${ }^{\circ}\left(\mathrm{EtOAc}-\mathrm{Et}_{2} \mathrm{O}\right)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3430$ and $1640 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }} 254 \mathrm{~nm}(\varepsilon 9.800)$; $\checkmark\left(\mathrm{CDCl}_{3}\right) 3.98 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.26 \mathrm{br}\left(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{CHNH}\right)$, $7.35\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{CHMe}_{2}\right), 7.5-8.2\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}_{2}\right)$, $7.84\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 8.00\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 8.56(3 \mathrm{H}, \mathrm{d}$, $\mathrm{CH}_{3} \mathrm{CH}$), and $9.05\left(6 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{CHMe} e_{2}\right)$ (Found: C, 65.0; H, 9.2; $\mathrm{N}, 25.25 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 9.15$; N, 25.45%).

Preparation of Imidazo[5,1-f]-1,2,4-triazines (20).-General procedure. The dihydroimidazo[5,1-f]-1,2,4-triazine (19) $(0.005 \mathrm{~mol})$ and 10% palladium oxide on charcoal (2 g) in p-cymene (100 ml) were heated at reflux under nitrogen for 6 h . After cooling to room temperature the catalyst was removed by filtration through Hyflo and the filtrate was
extracted with 2 N -hydrochloric acid $(2 \times 75 \mathrm{ml})$. The aqueous acidic extract was basified with sodium carbonate (to $c a . \mathrm{pH} 8)$ and extracted with ether $(3 \times 50 \mathrm{ml})$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ ethereal extract was evaporated to provide crude imidazotriazine. Purification was effected by chromatography on a column of silica gel and elution with etherethyl acetate.

4-Methyl-2-propyloxazol-5(4H)-one (8b).-Dicyclohexyl-carbodi-imide ($22.3 \mathrm{~g}, 0.108 \mathrm{~mol}$) in dichloromethane (75 ml) was added dropwise over 5 min to a stirred solution of butyrylalanine ($17.2 \mathrm{~g}, 0.108 \mathrm{~mol}$) in dichloromethane (125 $\mathrm{ml})$. The mixture was stirred for 2 h and the precipitated dicyclohexylurea was removed by filtration and washed with dichloromethane ($2 \times 20 \mathrm{ml}$). The combined filtrate and washings were concentrated and the crude product was distilled in vacuo to give 4-methyl-2-propyloxazol-5(4H)-one as an oil ($11.6 \mathrm{~g}, 76 \%$), b.p. $72-75^{\circ}$ at 12 mmHg ; $\nu_{\max }$. $\left(\mathrm{CHBr}_{3}\right) 1820$ and $1670 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 5.80(1 \mathrm{H}, \mathrm{n}$, $4-\mathrm{H}), 7.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $8.55\left(3 \mathrm{H}, \mathrm{d}, 4-\mathrm{CH}_{3}\right)$, and $9.00\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (Found: C, 59.15; H, 8.3; N, 10.0. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}$ required C, $59.55 ; \mathrm{H}, 7.85 ; \mathrm{N}, 9.9 \%$).

Ethyl 2-(4-Methyl-5-oxo-2-propylideneoxazolidin-3-yl)-2oxoacetate (11).-Ethyl oxalyl chloride ($1.37 \mathrm{~g}, 1.12 \mathrm{ml}$, 0.01 mol) in dry tetrahydrofuran (5 ml) was added dropwise over 5 min to a stirred solution of 4-methyl-2-propyl-oxazol-5(4H)-one $(1.4 \mathrm{~g}, \quad 0.01 \mathrm{~mol})$, 4-dimethylaminopyridine (0.1 g), and dry pyridine ($1.6 \mathrm{~g}, 0.02 \mathrm{~mol}$) in dry tetrahydrofuran (20 ml). The mixture was heated at reflux for 1 h (analytical t.l.c. showed a single product), and then cooled, filtered, and evaporated. The residue was purified by preparative t.l.c., eluting with cyclohexaneethyl acetate $(3: 1)$, to give the title compound as a pale yellow oil $(0.5 \mathrm{~g}, 20 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1820,1740,1695$, and $1663 \mathrm{~cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 4.5 \mathrm{br}(1 \mathrm{H}$, olefin CH , sharpens to a triplet at $\left.10^{\circ}\right), 5.10(1 \mathrm{H}, \mathrm{q}$, ring CH$), 5.66(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.83\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 8.42(3 \mathrm{H}, \mathrm{d}$, $\left.4-\mathrm{CH}_{3}\right), 8.61\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $8.97\left(3 \mathrm{H}, \mathrm{t},=\mathrm{CHCH}_{2}-\right.$ CH_{3}) [Found: $\mathrm{M}^{+}, 241.0933 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires 241.0950. $m / e, \quad 116.0384 \quad\left(\mathrm{NCOCO}_{2} \mathrm{Et}+\mathrm{H}\right.$ transfer $) . \quad \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{3}$ requires $m / e 116.0347$] (Found: C, $55.05 ; \mathrm{H}, 6.4 ; \mathrm{N}, 5.75$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires C, $54.75 ; \mathrm{H}, 6.25 ; \mathrm{N}, 5.8 \%$).

Ethyl 2-(4-Methyl-5-oxo-2-propyloxazolidin-3-yl)-2-oxoacetates (12) and (13).-Ethyl 2-(4-methyl-5-oxo-2-propyl-ideneoxazolidin-3-yl)-2-oxoacetate ($2.41 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethyl acetate (50 ml) was hydrogenated over 10% palladium on charcoal (0.25 g) for $17.5 \mathrm{~h}\left(0.01 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}\right.$ absorbed). The solution was filtered and evaporated to give an oil (2.4 g). A portion (2 g) was purified by chromatography on a column of silica (50 g); elution with cyclohexane-ethyl acetate ($3: 1$) gave the title compound as a mixture of isomers (12) and (13) ($0.9 \mathrm{~g}, 44 \%$); $\nu_{\text {mar. }}\left(\mathrm{CHBr}_{3}\right) 1800$, 1740 , and $1670 \mathrm{~cm}^{-1}$; τ (DMSO at $105{ }^{\circ} \mathrm{C}$) $3.97(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}$, collapsed to 2 s on irradiation of adjacent $\left.\mathrm{CH}_{2}\right), 5.36$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 8.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.44\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right)$ and $8.48\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right)$ (both $\left.4-\mathrm{CN}_{3}\right), 8.64\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and 9.01 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$) (Found: C, $53.9 ; \mathrm{H}, 6.8$; N, 5.7. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{5}$ requires $\mathrm{C}, 54.3 ; \mathrm{H}, 7.05 ; \mathrm{N}, 5.75 \%$).

We thank Drs. P. and J. Murray-Rust, University of Stirling, for the X-ray crystallography, Messrs. K. Ruddock and I. Smith for the preparation of several compounds, and Drs. D. Marshall and F. Ellis for helpful discussions.
[9/1250 Received, 8th August, 1979]

REFERENCES

${ }_{1}$ Part 1, R. W. Clarke, S. C. Garside, I. H. C. Lunts, D. Hartley, R. Hornby, and A. W. Oxford, J.C.S. Perkin I, 1979, 1120.
${ }^{2}$ J. W. Cornforth and R. H. Cornforth, J. Chem. Soc., 1953, 93.
3 H. D. Dakin and R. West, J. Biol. Chem., 1928, 78, 91.
${ }^{4}$ G. Höfle, W. Steglich, and H. Vorbrüggen, Angew. Chem. Internat. Edn., 1978, 17, 569.
${ }^{5}$ W. Steglich and G. Höfle, Chem. Ber., 1969, 102, 883 ; for leading references on the mechanism of the Dakin-West reaction
see: G. Höfle, A. Prox, and W. Steglich, Chem. Ber., 1972, 105, 1718; W. Steglich and G. Höfle, ibid., 1971, 104, 3644 ; R. Knorr, ibid., p. 3633; N. L. Allinger, G. L. Wang, and B. B. Dewhurst, J. Org. Chem., 1974, 39, 1730.
${ }^{6}$ H. Neunhoeffer and F. Weischedel, Annalen, 1971, 749, 16.
${ }^{7}$ G. Domany, J. Nyitrai, G. Simig, and K. Lempert, Tetrahedron Letters, 1977, 1393.
${ }^{8}$ For a recent review on the covalent hydration of heterocyclic systems see A. Albert, Adv. Heterocyclic Chem., 1977, 20, 117.

